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Empirically, the rich save more
I Fagereng, Holm, Moll, & Natvik (2019) Model
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Figure 1: Saving rates across the wealth distribution (preview).

In our main empirical exercise we ask how the corresponding saving rates vary across the

wealth distribution. As is often the case, the resulting findings are easier to communicate

visually rather than verbally. Figure 1 therefore plots the corresponding saving rates against

percentiles of net worth. To the left of the graph are households with negative net worth.

Moving to the right, households become progressively wealthier.

First, consider the net saving rate, i.e. the saving rate excluding capital gains. For

households with negative net worth, the net saving rate declines with wealth. But for the

largest part of the wealth distribution it is flat around seven percent. This pattern for net

saving rates is seemingly consistent with canonical saving models which predict exactly such

a flat saving rate. But when we instead examine gross saving rates including capital gains

we find a strikingly different pattern: gross saving rates increase sharply with wealth, from

zero at the fifteenth percentile (corresponding to zero net worth) to thirty-five percent for

the top one percent of the wealth distribution.4 The proximate explanation for the diverging

behavior of these two notions of saving rates is simple. Wealthier households hold assets

like stocks and housing that experience persistent capital gains. Instead of selling off these

assets to consume, households hold on to them and therefore have a high gross saving rate.

We term this phenomenon “saving by holding.”

A simple back-of-the-envelope example helps clarify this point as well as the magnitudes

in Figure 1. Assume that the net saving rate is 10% at all points of the wealth distribution

4As we explain in more detail below, year-to-year fluctuations in asset prices mean that also the gross sav-
ing rate displays large year-to-year fluctuations. The line labeled “gross (systematic component)” therefore
plots the systematic component of the gross saving rate (defined in more detail in the main text).
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Empirically, the rich save more

I Understanding saving behavior of the rich is important
because

I If rich have lower marginal propensity to consume (MPC), then
consumption tax regressive and may not be desirable from
equity perspectives

I MPC heterogeneity implies wealth distribution matters for
determining aggregate consumption and hence for monetary
policy (Kaplan et al., 2018)
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Homotheticity v.s. non-homotheticity

I High saving rate of rich seem to contradict homotheticity
I Homothetic preferences =⇒ (asymptotically) linear policies
I Hence asymptotically constant saving rate

I Most explanations of high saving rate of rich based on
non-homothetic preferences

I Carroll (2000): ‘capitalist spirit’ (utility from holding wealth)
I De Nardi (2004): bequest

I However, non-homothetic preferences have undesirable
properties

I Inconsistent with balanced growth
I Many parameters and calibration arbitrary
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Contributions

1. “Homothetic theory” of high saving rate of the rich
I (Technical) Prove asymptotic linearity of consumption

functions

lim
a→∞

c(a, z)

a
= c̄(z) = constant

in general Markovian setting with stochastic discount factor β,
returns R, and income Y

I (Technical) Exact analytical characterization of asymptotic
MPC c̄(z)

I (Surprising) Necessary and sufficient condition for c̄(z) = 0

2. Calibrate model and show zero asymptotic MPC (hence
increasing and large saving rate) empirically plausible
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Literature

I Income fluctuation problem: Schechtman & Escudero
(1977 JET); Chamberlain & Wilson (2000 RED); Li &
Stachurski (2014 JEDC); Ma, Stachurski, & Toda (2020 JET)

I Concavity of consumption: Carroll & Kimball (1996 ECMA)

I Saving rate: Dynan, Skinner, & Zeldes (2004 JPE);
Fagereng, Holm, Moll, & Natvik (2019 WP)

I Asymptotic linearity (heuristic): Toda (2019 JME);
Gouin-Bonenfant & Toda (2018 WP)

I Other properties: Carroll (2009 JME); Carroll (2020 QE)
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Income fluctuation problem

Income fluctuation problem

Consider

maximize E0

∞∑
t=0

βtu(ct)

subject to at+1 = Rt+1(at − ct) + Yt+1,

0 ≤ ct ≤ at ,

where

I β: discount factor

I ct ,Yt : consumption and non-financial income

I at : asset at beginning of time t including current income

I Rt : asset return from t − 1 to t
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Income fluctuation problem

(More general) income fluctuation problem

Consider

maximize E0

∞∑
t=0

(
t∏

i=0

βi

)
u(ct)

subject to at+1 = Rt+1(at − ct) + Yt+1,

0 ≤ ct ≤ at ,

where

I βt : discount factor from time t − 1 to t (set β0 ≡ 1)

I ct ,Yt : consumption and non-financial income

I at : asset at beginning of time t including current income

I Rt : asset return from t − 1 to t
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Income fluctuation problem

Stochastic processes

Stochastic processes {βt ,Rt ,Yt}t≥1 obey

βt = β(Zt , εt), Rt = R(Zt , ζt), Yt = Y (Zt , ηt),

where

I β,R,Y : nonnegative measurable functions

I {Zt}t≥0: time-homogeneous finite state Markov chain taking
values in Z = {1, . . . ,Z} with transition probability matrix P

I innovation processes {εt} , {ζt} , {ηt} iid over time and
mutually independent
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Income fluctuation problem

Assumptions

A1 (Inada condition)

u : [0,∞)→ R ∪ {−∞} is twice continuously differentiable on
(0,∞) and satisfies u′ > 0, u′′ < 0, u′(0) =∞, and u′(∞) = 0

A2 (spectral condition)

The following conditions hold:

1. Ez β <∞ and Ez βR <∞ for all z ∈ Z

2. r(PDβ) < 1 and r(PDβR) < 1

3. Ez Y <∞ and Ez u′(Y ) <∞ for all z ∈ Z

Here

I r : spectral radius
I DX : diagonal matrix with DX (z , z) = Ez X = E [X |Z = z ]
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Income fluctuation problem

Existence and uniqueness

Theorem (Ma, Stachurski, Toda (2020), Theorem 2.2)

Suppose A1–A2 hold. Then the income fluctuation problem has a
unique solution. Furthermore, the consumption function c(a, z)
can be computed by policy function iteration.

I Because borrowing constraint ct ≤ at may bind, Euler
equation becomes

u′(ct) = max
{

Et βt+1Rt+1u′(ct+1), u′(at)
}

I Given candidate policy c(a, z), policy function iteration
updates c(a, z) by ξ = Tc(a, z), where

u′(ξ) = max
{

Ez β̂R̂u′(c(R̂(a− ξ) + Ŷ , Ẑ )), u′(a)
}
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Asymptotic linearity

Additional assumptions for asymptotic linearity

A1’ (CRRA)

The utility function exhibits constant relative risk aversion γ > 0:

u(c) =

{
c1−γ

1−γ , (γ 6= 1)

log c. (γ = 1)

Furthermore, Ez βR1−γ <∞ for all z .

I Condition Ez βR1−γ <∞ unnecessary but makes exposition
simpler
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Asymptotic linearity

Heuristic derivation of asymptotic MPC

I u is CRRA, so u′(c) = c−γ

I Setting c(a, z) ≈ c̄(z)a (linear), Euler equation becomes

c̄(z)−γ ≈ Ez β̂R̂1−γ c̄(Ẑ )−γ(1− c̄(z))−γ

I Setting x(z) = c̄(z)−γ , we get

x(z) ≈
(

1 +
(

Ez β̂R̂1−γx(Ẑ )
)1/γ

)γ
I Setting D = DβR1−γ , we get

x(z) ≈ (Fx)(z) :=
(

1 + (PDx)(z)1/γ
)γ
,

so x should be fixed point of F
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Asymptotic linearity

Theorem (Asymptotic linearity)

Suppose A1’ and A2 hold, c(a, z) be consumption function, and
D = DβR1−γ .

1. If r(PD) < 1, then

c̄(z) := lim
a→∞

c(a, z)

a
= x∗(z)−1/γ

for all z ∈ Z, where x∗ = (x∗(z))Zz=1 ∈ RZ
+ is unique fixed

point of F : RZ
+ → RZ

+ defined by

(Fx)(z) :=
(

1 + (PDx)(z)1/γ
)γ

2. If r(PD) ≥ 1 and PD irreducible, then lima→∞ c(a, z)/a = 0
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Asymptotic linearity

Discussion

I In typical income fluctuation problem, people assume “finite
value condition” Ez βR1−γ < 1, but unnecessary

I p. 244 of Samuelson (1969 REStat), Eq. (9) of Krebs (2006
ET), Eq. (3) of Carroll (2009 JME), Eq. (18) of Toda (2014
JET), Eq. (3) of Toda (2019 JME)

I When Ez βR1−γ ≥ 1, asymptotic MPC can be zero
(surprising)

I Theorem does not cover all cases because assumes
Ez βR1−γ <∞ and requires irreducibility of PD, but these
assumptions can be dropped

QM & AAT CUEB & UCSD

Saving Rate of Rich



Introduction Asymptotic linearity Asymptotic MPC and saving rates Proofs Conclusion

Asymptotic linearity

General case
I Let K = PD, where P: transition probability matrix, D:

diagonal with D(z , z) = Ez βR1−γ ∈ [0,∞]
I Use convention βR1−γ = (βR)R−γ and 0 · ∞ = 0, so always

well-defined

I Relabel states such that

K =

K1 · · · ∗
...

. . .
...

0 · · · KJ

 ,
where each diagonal block Kj irreducible

I Recall: square matrix A reducible if ∃ permutation matrix P
such that P>AP is block upper triangular with at least two
diagonal blocks

I Hence irreducible decomposition of K always exists
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Asymptotic linearity

Complete characterization

Theorem
Suppose A2 holds and utility is CRRA (γ). Express K = PD as
block upper triangular with irreducible diagonal blocks. Define
{xn}∞n=0 ∈ [0,∞]Z by x0 = 1 and xn = Fxn−1, where F is as
before. Then {xn} monotonically converges to x∗ ∈ [1,∞]Z and

c̄(z) := lim
a→∞

c(a, z)

a
= x∗(z)−1/γ ∈ [0, 1].

Furthermore, c̄(z) = 0 if and only if there exist j , ẑ ∈ Zj , and
m ∈ N such that Km(z , ẑ) > 0 and r(Kj) ≥ 1.
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Examples

Example: log utility

I If γ = 1, then x∗ = Fx∗ becomes

x∗ = 1 + PDx∗ ⇐⇒ x∗ = (I − PD)−11,

where D = Dβ = diag(. . . ,Ez β, . . . )

I Since r(PD) < 1 by A2, we always have c̄(z) > 0
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Examples

Example: iid returns

I If b = b(z) = Ez βR1−γ does not depend on z , then D = bI

I If x = k1 is a multiple of the vector 1, then
PDx = bPk1 = bk1 because P is transition probability matrix

I Hence if b < 1, x∗ = Fx∗ reduces to

x∗(z) = (1+(bx∗(z))1/γ)γ ⇐⇒ c̄(z) = x∗(z)−1/γ = 1−b1/γ

I Therefore with constant discounting (β(z , ε) ≡ β) and
risk-free saving (R(z , ζ) ≡ R), asymptotic MPC is constant
regardless of income shocks:

c̄(z) =

{
1− (βR1−γ)1/γ if βR1−γ < 1,

0 otherwise.
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Saving rates of the rich

I From budget constraint, saving rate (excluding capital loss) is

st+1 =

change in wealth︷ ︸︸ ︷
at+1 − at

max {(Rt+1 − 1)(at − ct), 0}︸ ︷︷ ︸
capital gains

+ Yt+1︸︷︷︸
labor income

= 1− (R̂ − 1)−(1− c/a) + c/a

(R̂ − 1)+(1− c/a) + Ŷ /a
∈ (−∞, 1)

I Letting a→∞, asymptotic saving rate is

s̄ := 1− (R̂ − 1)−(1− c̄) + c̄

(R̂ − 1)+(1− c̄)
∈ [−∞, 1]
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Impossibility of positive saving rates

Proposition

Consider a canonical Bewley model in which agents are
infinitely-lived and relative risk aversion γ, discount factor β, and
return on wealth R > 1 are constant. Then in the stationary
equilibrium the asymptotic saving rate is negative.
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Proof.

I Stachurski & Toda (2019 JET) show βR < 1 in stationary
equilibrium

I Since R > 1, we obtain βR1−γ = (βR)R−γ < 1. By previous
example, asymptotic MPC is c̄ = 1− (βR1−γ)1/γ ∈ (0, 1).

I Hence

s̄ = 1− c̄

(R − 1)(1− c̄)
< 0

⇐⇒ (R − 1)(1− c̄) < c̄

⇐⇒ (R − 1)(βR1−γ)1/γ < 1− (βR1−γ)1/γ

⇐⇒ (βR)1/γ < 1.
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Stochastic β,R need not help

Proposition

Consider a Bewley model in which agents are infinitely-lived,
relative risk aversion γ is constant, and {βt ,Rt}t≥1 is iid with

E R > 1 and EβR1−γ < 1. If the stationary equilibrium wealth
distribution has an unbounded support, then the asymptotic saving
rate evaluated at R̂ = E R is nonpositive.
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Proof.

I Since by assumption EβR1−γ < 1, by previous example the
asymptotic MPC is c̄ = 1− (EβR1−γ)1/γ ∈ (0, 1).

I Hence asymptotic saving rate evaluated at E R > 1 is

s̄ = 1− c̄

(E R − 1)(1− c̄)
≤ 0

⇐⇒ (E R − 1)(1− c̄) ≤ c̄

⇐⇒ E R(1− c̄) ≤ 1.

I Since E R(1− c̄) is the expected growth rate of wealth for
infinitely wealthy agents, if wealth distribution unbounded and
E R(1− c̄) > 1, then wealth grow at the top, violating
stationarity.
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Numerical example with c̄ = 0

I Constant discount factor β and RRA γ

I Gross portfolio return is

Rt(θ) := 1 + (1− τ)(θsRs
t + θbRb

t + θf R f − 1),

where Rs
t : stock return, Rb

t : business return, R f : risk-free
rate, τ : capital income tax

I Business return

Rb
t =

{
1

1−pb Rs
t with probability 1− pb,

0 with probability pb,

I Income growth deterministic: Yt+1/Yt = eg

QM & AAT CUEB & UCSD

Saving Rate of Rich



Introduction Asymptotic linearity Asymptotic MPC and saving rates Proofs Conclusion

Calibration
I One period is a month, annual 4% discounting
I Stock return GARCH(1, 1),

log Rs
t = µ− 1

2
σ2
t + εt ,

εt = σtζt , ζt ∼ iidN(0, 1)

σ2
t = ω + αε2

t−1 + ρσ2
t−1,

calibrated from monthly stock return and discretize using
Farmer & Toda (2017)

I Business bankruptcy rate 2.5% following Luttmer (2010)
I Portfolio data constructed from Saez & Zucman (2016),

(θs , θb, θf ) = (0.5546, 0.0827, 0.3627)
I Income growth g calibrated from real per capita GDP growth
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Asymptotic MPC with GARCH(1, 1) returns
I Zero asymptotic MPC possible with γ above 4–5

0 1 2 3 4 5 6
 (risk aversion)

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

 (a
nn

ua
l d

isc
ou

nt
 ra

te
)

c(z) > 0 c(z) = 0

r(PD R) = 1
r(PD R1 ) = 1

QM & AAT CUEB & UCSD

Saving Rate of Rich



Introduction Asymptotic linearity Asymptotic MPC and saving rates Proofs Conclusion

Consumption functions at low asset level

I Can’t see any meaningful difference between γ = 3, 5
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Consumption functions at high asset level

I Consumption with γ = 5 much lower and more concave
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Consumption rate
I γ = 3: r(PD) < 1 and c̄ > 0
I γ = 5: r(PD) ≥ 1 and c̄ = 0
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Saving rate
I γ = 3: r(PD) < 1 and s̄ small
I γ = 5: r(PD) ≥ 1 and s̄ = 1 Data
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Outline of proof

Show that

1. policy function iteration leads to increasingly tighter upper
bounds on consumption functions that are asymptotically
linear with explicit slopes,

2. slopes of upper bounds converge using fixed point theory of
monotone convex maps, and

3. consumption functions have linear lower bounds with identical
slopes to limit of upper bounds, implying asymptotic linearity.
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Space of candidate consumption functions

I Let C be space of candidate consumption functions such that
c : (0,∞)× Z→ R is (i) continuous, (ii) increasing in first
element, (iii) 0 < c(a, z) ≤ a for all a, z , and (iv)

sup
(a,z)∈(0,∞)×Z

∣∣u′(c(a, z))− u′(a)
∣∣ <∞

I For c , d ∈ C, define marginal utility distance

ρ(c , d) = sup
(a,z)∈(0,∞)×Z

∣∣u′(c(a, z))− u′(d(a, z))
∣∣ <∞

I Ma, Stachurski, & Toda (2020) show (C, ρ) is complete
metric space
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Time iteration operator

I Given candidate policy c ∈ C, define Tc(a, z) by the value
ξ ∈ (0, a] that solves Euler equation

u′(ξ) = max
{

Ez β̂R̂u′(c(R̂(a− ξ) + Ŷ , Ẑ )), u′(a)
}

I Ma, Stachurski, & Toda (2020 JET) show T : C → C is
contraction mapping
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Iterating T leads to tighter upper bounds

Proposition

Let everything be as in Theorem. If c ∈ C and

lim sup
a→∞

c(a, z)

a
≤ x(z)−1/γ

for some x(z) ≥ 1 for all z ∈ Z, then

lim sup
a→∞

Tc(a, z)

a
≤ (Fx)(z)−1/γ .
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Proof.

I Let {an, αn} be sequence such that an ↑ ∞ and
αn(z) = Tc(an, z)/an → lim supa→∞ Tc(a, z)/a

I Use Euler equation, definition of T , and Fatou’s lemma to
show claim
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Characterizing limit of iteration of F

Proposition

Let (Fx)(z) :=
(
1 + (PDx)(z)1/γ

)γ
. Then F has a (necessarily

unique) fixed point x∗ ∈ RZ
+ if and only if r(PD) < 1.

Take any x0 ∈ RZ
+ and define xn = Fxn−1 for all n ∈ N.

1. If r(PD) < 1, then xn → x∗

2. If r(PD) ≥ 1 and PD irreducible, then xn(z)→∞
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Proof.

I F = φ ◦ K , where φ(t) = (1 + t1/γ)γ and K = PD

I φ increasing and concave (convex) if γ ≤ 1 (> 1)

I Case r(PD) < 1: apply Du (1990) below to F

I If ∃ fixed point x∗, then x∗ = Fx∗ � Kx∗; multiplying left
Perron vector y of K , get y ′x∗ > r(K )y ′x∗, hence
r(K ) < 1

Theorem (Du, 1990)

If X partially ordered Banach space, A : X → X monotone, convex
or concave, and ∃u ≤ v such that Au � u and Av � v, then A
has unique fixed point on [u, v ] and can be computed by iterating
xn = Axn−1
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Lower bound

Proposition

Let everything be as in Theorem. Suppose r(PD) < 1 and let
x∗ ∈ RZ

++ unique fixed point of F . Restrict candidate space to

C0 = {c ∈ C | c(a, z) ≥ ε(z)a for all a > 0 and z ∈ Z} ,

where ε(z) = x∗(z)−1/γ ∈ (0, 1]. Then TC0 ⊂ C0.

Corollary

Consumption function satisfies c(a, z) ≥ x∗(z)−1/γa.

Proof.
Let c0(a, z) = a ∈ C0. Iterating T : C0 → C0, consumption function
(fixed point of T ) must be in C0.
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Proof of Proposition.

I If TC0 6⊂ C0, then ∃c ∈ C0, a > 0, z ∈ Z such that
ξ := Tc(a, z) < ε(z)a ≤ a

I Using Euler equation and concavity of u (u′ decreasing),

u′(ε(z)a) < u′(ξ) = Ez β̂R̂u′(c(R̂(a− ξ) + Ŷ , Ẑ ))

≤ Ez β̂R̂u′(ε(Ẑ )(R̂(a− ξ) + Ŷ )) ≤ Ez β̂R̂u′(ε(Ẑ )R̂[1− ε(z)]a)

I Using u′(c) = c−γ and ε(z) = x∗(z)−1/γ , we obtain

x∗(z) < Ez β̂R̂1−γx∗(Ẑ )[1− x∗(z)−1/γ ]−γ

⇐⇒ x∗(z) <
(

1 + (Ez β̂R̂1−γx∗(Ẑ ))1/γ
)γ

= (Fx∗)(z),

contradiction because x∗ fixed point of F
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Proof of Theorem: case r(PD) ≥ 1

I Define c0 ∈ C by c0(a, z) = a and cn := T nc0 ∈ C
I By previous result, lim supa→∞ cn(a, z)/a ≤ xn(z)−1/γ , where

x0 = 1 and xn = Fxn−1

I Clearly c(a, z) ≤ a = c0(a, z), so c(a, z) ≤ cn(a, z) by
induction

I If r(PD) ≥ 1 and PD irreducible, then xn(z)→∞, so

0 ≤ lim sup
a→∞

c(a, z)

a
≤ lim

a→∞

cn(a, z)

a
= xn(z)−1/γ → 0

as n→∞

QM & AAT CUEB & UCSD

Saving Rate of Rich



Introduction Asymptotic linearity Asymptotic MPC and saving rates Proofs Conclusion

Proof of Theorem: case r(PD) < 1

I By same argument,

lim sup
a→∞

c(a, z)

a
≤ lim sup

a→∞

cn(a, z)

a
≤ xn(z)−1/γ → x∗(z)−1/γ

I But we know c(a, z)/a ≥ x∗(z)−1/γ

I Hence

lim
a→∞

c(a, z)

a
= x∗(z)−1/γ

QM & AAT CUEB & UCSD

Saving Rate of Rich



Introduction Asymptotic linearity Asymptotic MPC and saving rates Proofs Conclusion

Conclusion

I With homothetic preferences, policy functions are
asymptotically linear

I Asymptotic linearity is expected but proof not simple

I Surprisingly, c̄(z) = lima→∞ c(a, z)/a = 0 is possible

I May explain why the rich save so much
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